Corpus-based Dependency Analysis of
Japanese Sentences
using Verb Bunsetsu Transitivity

Daisuke Kawahara and Sadao Kurohashi

Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
{kawahara,kuro}@pine.kuee.kyoto-u.ac. jp

Abstract

In a Japanese sentence, the structural ambigu-
ity becomes very serious when it contains many
verb bunsetsus. This paper proposes a pars-
ing method based on possibilities of verb bun-
setsu dependencies which are learned from a
syntactically annotated corpus. By assuming
the transitivity of verb bunsetsu dependencies,
this method can avoid the data sparseness prob-
lem. We incorporate this corpus-based method
with a rule-based parser KNP (Kurohashi and
Nagao, 1994), and show its effectiveness.

1 Japanese Grammar and Task
Definition

Let us first introduce Japanese grammar briefly.
The structure of a Japanese sentence can be
described well by the dependency relation be-
tween bunsetsus. A bunsetsu is a basic unit in
Japanese language, consisting of one or more
content words and the following zero or more
function words. The English equivalent for a
bunsetsu would be a small noun phrase, a prepo-
sitional phrase, and a verb phrase consisting of
auxiliary verbs and a main verb, and so on.
Japanese language is head-final, that is, a bun-
setsu depends on another bunsetsu to its right
(not necessarily the adjacent bunsetsu).

There are two classes of bunsetsu, noun bun-
setsu (NB) and wverb bunsetsu (VB), depend-
ing on whether its content word is a noun or a
verb. The function word or the ending form of
a bunsetsu shows whether it should modify (de-
pend on) NB or VB. Consequently, there are
four classes of a bunsetsu as follows:

VB-modifying VB

eg. kake(stem of ‘write’) - ba(ending which
indicates if-clause),
kaku(stem of ‘write’) - to(postposition
which indicates when-clause)

NB-modifying VB
eg. kai(stem of ‘write’) - ta(ending which in-
dicates embedded sentence)

VB-modifying NB
eg. kare(‘he’) -ga(nominative case marker),
hon(‘book’) -wo(accusative case marker)

NB-modifying NB
eg. kare(‘he’) -no(‘of”)

The structural constraint on Japanese sen-
tences is only the above distinction of four bun-
setsu classes, which is too weak to detect a
unique structure of a sentence, and often causes
a lot of possible structures.

For example, the following example sentence
has many possible dependency structures (solid
arrows show correct dependencies; dotted ar-
rows show other possibilities):

hon-wo wakaru

‘book’

kare-ga kaita yome-ba

‘he’ ‘write ‘read’ ‘understand’

(Translation: If you read the book written by him,
You can understand.)

A very powerful preference rule for this prob-
lem is that every bunsetsu depends on the near-
est possible head. For example, all the depen-
dency relations in the above example meet the
rule. This rule, however, does not hold very
well for VB-modifying VBs. A VB-modifying

VB often depends on much further bunsetsu
in a sentence. That is, the analysis of VB-
modifying VBs’ heads is the key in Japanese
sentence parsing. This paper proposes a corpus-
based method for handling this problem.

Let us define some terminologies, here. We
call generalized bunsetsu in which only function
words or ending forms are remained, a bunsetsu
type. For example, a bunsetsu type of “yome-
ba” is < ---ba>. A set of several bunsetsu types
are called a bunsetsu class.

2 Corpus-based Analysis of Verb
Bunsetsu Dependencies

Minami proposed a preference rule about VB
dependencies (Minami, 1993). He classified sev-
eral types into three classes depending on their
strength, e.g., < ---keredo> ‘although ---’ is
classified into the strongest class, < - - -tsutsu>
‘while ---" is classified into the weakest class.
Based on his VB classification, he claimed that
a weaker VB cannot contain a stronger VB in its
scope, that is, a stronger VB does not depend
on a weaker VB.

Minami’s claim seems true. However, his
three-level VB classification was too coarse to
handle a strength order among VBs precisely.
Accordingly, KNP and Shirai et al. introduced
more detailed classes and their strength order
based on human intuition (Shirai et al., 1995).
However, the more precise the rule system is,
the more complicated it is, and the more ex-
pensive its maintenance is. This is an intrinsic
problem in rule-based methods.

If a syntactically annotated corpus is avail-
able, it is not necessary to introduce VB classes,
nor to rely on human intuition; the strength or-
der among VB types can be learned directly.
That is, if we find a VB type depends on an-
other VB type in a syntactically annotated cor-
pus, we can say that the former is weaker than
the latter.

This paper proposes a parsing method based
on VB types’ dependencies which are learned
from a syntactically annotated corpus. This
method has the following two advantages:

e Because it doesn’t classify VBs and doesn’t
determine the strength order manually, it
doesn’t have arbitrariness.

e Corpus-based methods intrinsically have

Table 1: Examples of VB types

examples VB types
kaki-nagara < ---nagara>
kaki-tsutsu < -« tsutsu>
kaita-nara < ---mara>

kaita NB < NB-modifying VB>
kake-ba < ---ba>

kaita-keredo < ---keredo>
kaita-node < ---node>

kaita-to < ---to (quotation)>
kaita. <FEOS5">

“EOS means a bunsetsu of the end of a
sentence.

the data sparseness problem. Assuming the
transitivity of VB type dependencies, this
problem can be avoided.

Although Minami didn’t mention explicitly,
some stronger VB can work as a barrier of
dependency. Suppose a sentence like hon-wo
‘book’ yomi-nagara(A) ‘read’ gakkou-ni ‘school’
itta-to,(B) ‘go’ hanashita. ‘say’. VB type
< ---‘nagara’> (A) can depend on VB type
< -+-‘to’ > (B), but type A cannot depend on
the further VB than B actually. This means
that VB type B is a barrier to VB type A. Such
a information is an important cue to reduce the
ambiguity of dependencies.

2.1 Learning of VB Type Dependencies

First, VB types are labeled depending on func-
tion words or the ending forms. VB types are
distinguished by whether a VB is followed by a
comma or not. There are 277 VB types in total.
Table 1 shows examples of VB types.

The dependencies learned from a corpus are
between two VB types (Figure 1).

Then, we count dependencies between two
VB types in a sentence. When a VB type
(VByype1) goes over a latter VB type (VByype2).
depending on a further VB, we also count go-
ing over relation between the VByype1 and the
VBtypeQ-

tsukareta-node nomi-nagara kyuukeishita.

‘because ... tired’ ‘while.... drink’ ‘rest’

For example, from the above sentence, the
following dependencies are learned.

dependent head depend/go over
< ---node> <EOS> 1/0
< ---node> < ---nagara> 0/1
< ---nagara> <EOS> 1/0

2.2 Dependency Analysis Algorithm

After the learning process in the previous sec-
tion, two VB types (the former one, VBgypea,
and the latter one, VByyp.p) can have one of
the following four dependency patterns:

depend:found and go-over:found
VBiypea can both depend on and go over
VBiyper- In the sense of Minami’s claim,
VBiypea is weaker than VByypen.

depend:found and go-over:not-found
In this case, we interpret that VBiy,.p is
a barrier to VByypea. That is, when a
sentence is something like “... VByypea ...
VBiypen ..., we consider that VByypes de-
pends on VByy,.p or closer possible head.

[head]
VB-modifyingVBs NB-modifying VBs
(208) (69)

1 typel
a type2
- >
5 2~ :
s 23
g gl
5E
m
>
In this matrix a/b means a # of depending, b: # of going over.
Figure 1: Relations between dependents and

heads

depend:not-found and go-over:found
In this case, we interpret that VBiypeq is
stronger than VBy,,.p in the sense of Mi-
nami’s claim, and VByypea cannot depend
on VByypen.

depend:not-found and go-over:not-found

In this case, because of lack of data,
dependency possibility between VBiypea
and VBiy,.p cannot be estimated. We
handle this case to be the same as
depend:not-found and go-over:found, that
is, VByypea is stronger than VByypep.

By using these criteria, we can reduce the am-
biguity of VB-modifying VBs’ dependencies.

The parsing system is based on the grammars
of KNP, which is a dependency structure an-
alyzer based on dependency grammar formal-
ism. And the information learned from a train-
ing corpus is used to decide a head of a VB-
modifying VB. If there are many head candi-
dates, the nearest one is selected as a head.

2.3 Filling up and Cleaning up of VB
Type Dependencies

There are two problems in the simple learning
method described in Section 2.1:

e Noise (an exceptional dependency which
holds in a special context, or an annotated
error)

e Data sparseness

To solve these problems, we introduce two
procedures below.

Filling up

In general, corpus-based methods have the
data sparseness problem. To cope with this
problem, we fill up VB type dependencies which
doesn’t exist in the training corpus by assum-
ing the transitivity. That is, if there is a de-
pendency between VB type X and VB type Y,
and VB type Y and VB type Z, then we guess
that VB type X can depend on VB type Z. In
other words, we assume that we found a depen-
dency between VB type X and VB type Z in the
corpus.

Cleaning up

Noise in the corpus, an exceptional depen-
dency or an annotated error, might cause side
effects in parsing. Hence, we remove dependen-
cies which make side effects by the following
procedure.

First, the training corpus is parsed using the
simply learned data. Counting the correct and
erroneous numbers of each VB type dependency,
if the ratio of the erroneous number against
the correct number is bigger than some thresh-
old, this dependency should be deleted from the
learned data. A preliminary experiment shows
that it is the most appropriate for the threshold
to be set 1:1 (i.e., the erroneous number is equal
to the correct number).

3 Experiments
3.1 Methods of Experiments

We used the Kyoto University Corpus (Kuro-
hashi and Nagao, 1998) for learning. This cor-
pus consists of about 30,000 sentences of news-
paper articles. It contains manually cleaned
part-of-speech tags and dependency tags.

First, the corpus is divided into two segments,
the training and the test corpus, in several ways
like cross-validation. Then, VB types’ depen-
dencies are learned from the training corpus,
the testing corpus is parsed by the algorithm in
Section 4.2, and the parse results are compared
with the manually tagged structures.

When calculating a parsing accuracy, we for-
get the last and the second last bunsetsu, since
the last one does not depend on any bunsetsu
(the head of a sentence) and the second last
must depend on the last one. Then a parsing
accuracy is calculated as follows:

of bunsetsus whose head is correct

accuracy =
of bunsetsus

3.2 Experimental Result

Table 2 shows the total result. This method’s
parsing accuracy is a little bit better than KNP.
In this method, we achieve the same accuracy,
as we use KNP, without the preference rules be-
tween VBs.

Table 3 shows the number of learned depen-
dencies and parsing accuracies of one test set,
when the filling up and the cleaning up of VB
type dependencies are repeated. There are 208

Table 2: Accuracies of dependencies - (learning
twice)

All VB-modifying VBs
KNP 21764/24146 3534/4254
(0.901) (0.831)
our method | 21772/24146 3551/4254
(0.902) (0.835)

Table 3: The number of learned dependencies
and VB accuracy

number VB accuracy
simple learning 2212 | 1078/1337 (0.806)
Cleaning up 1 1953 | 1127/1337 (0.843)
Filling up 1 8585 -
Cleaning up 2 8186 | 1140/1337 (0.853)
Filling up 2 16923 -
Cleaning up 3 16391 | 1140/1337 (0.853)
Filling up 3 18095 -
Cleaning up 4 17552 | 1140/1337 (0.853)

dependent VB types and 277 head VB types, ac-
cordingly there are 57616 kinds of possible VB
type dependencies. In the simple learning, 2212
dependencies were learned, and their accuracy
was 80.6%. Finally, 17552 dependencies were
learned, and their accuracy became 85.3%. This
table shows that repeating the filling up and the
cleaning up of VB type dependencies was very
effective.

4 Related Work

There have been many research activities in
corpus-based Japanese parsing, which handle
VB dependencies as one of dependency relations
and do not pay special attention to VB depen-
dencies (Fujio and Matsumoto, 1998; Shirai et
al., 1998).

Nishiokayama proposed a statistical method
of dependency analysis of VBs (Nishiokayama
et al., 1998). His method concentrated on VB
dependencies, and constructed decision lists au-
tomatically using detailed features concerning
VBs.

These conventional methods, however, did
not take account of Minami’s claim, that there
is a strength order among VBs, and a stronger
VB does not depend on a weaker VB. On the

other hand, we exploit this characteristic, that
is, the VB transitivity, which enables us to avoid
the data sparseness problem.

5 Conclusion

This paper proposed a parsing method based
on possibilities of VB type dependencies which
are learned from an annotated corpus given syn-
tactic structures. In this method, we obtained
the same accuracy, as we use KNP, without the
preference rules between VBs.

References

Masakazu Fujio and Yuji Matsumoto. 1998.
Japanese dependency structure analysis
based on lexicalized statistics. In Proceedings
of the 3rd Conference on Empirical Methods
in Natural Language Processing, pages 88-96.

S. Kurohashi and M. Nagao. 1994. A syntac-
tic analysis method of long japanese sentences
based on the detection of conjunctive struc-
tures. Computational Linguistics, 20(4).

S. Kurohashi and M. Nagao. 1998. Building a
japanese parsed corpus while improving the
parsing system. In Proceedings of The First
International Conference on Language Re-
sources € Evaluation, pages 719-724.

Fujio Minami. 1993. Outline of contemporary
Japanese grammar. Taisyukan Syoten.

Shigeyuki Nishiokayama, Takehito Utsuro, and
Yuji Matsumoto. 1998. Extracting prefer-
ence of dependency between japanese subor-
dinate clauses from corpus. In Technical Re-
port of the Institute of Electoronics, Informa-
tion and Communication FEngineers NLC98-
11, pages 31-38.

Satoshi Shirai, Satoru Ikehara, Akio Yokoo,
and Junko Kimura. 1995. A new depen-
dency analysis method based on semantically
embedded sentence structures and its per-
formance on japanese subordinate clauses.
Transactions of Information Processing Soci-
ety of Japan, 36(10):2353-2361.

Kiyoaki Shirai, Kentaro Inui, Takenobu Toku-
naga, and Hozumi Tanaka. 1998. An em-
pirical evaluation on statistical parsing of
japanese sentences using lexical association
statistics. In Proceedings of the 3rd Confer-
ence on Empirical Methods in Natural Lan-
guage Processing, pages 80 87.

