What's New

Prof. Kurohashi was appointed to the reserach supervisor of PRESTO "Fundamental Information Technologies toward Innovative Social System Design." (6/5)

We will present following papers at ACL2016 (2016/8/7-12) (5/25)

  • Tomohide Shibata, Daisuke Kawahara and Sadao Kurohashi: Neural Network-Based Model for Japanese Predicate Argument Structure Analysis
  • Hitoshi Otsuki, Chenhui Chu, Toshiaki Nakazawa and Sadao Kurohashi: Dependency Forest based Word Alignment (Student Research Workshop)
  • Raj Dabre, Yevgeniy Puzikov, Fabien Cromieres and Sadao Kurohashi: The Kyoto University Cross-Lingual Pronoun Translation System (WMT 2016)
  • Yu Shen, Chenhui Chu, Fabien Cromieres and Sadao Kurohashi: Cross-language Projection of Dependency Trees with Constrained Partial Parsing for Tree-to-Tree Machine Translation (WMT 2016)

We will present following papers at NAACL2016 (2016/6/12-17) (3/12)

  • Yugo Murawaki: Statistical Modeling of Creole Genesis
  • John Richardson, Fabien Cromieres, Toshiaki Nakazawa and Sadao Kurohashi: Flexible Non-Terminals for Dependency Tree-to-Tree Reordering
  • Yuichiro Machida, Daisuke Kawahara, Sadao Kurohashi and Manabu Sassano: Design of Word Association Games using Dialog Systems for Acquisition of Word Association Knowledge (AKBC 2016)
  • Tetsuaki Nakamura and Daisuke Kawahara: Constructing a Dictionary Describing Feature Changes of Arguments in Event Sentences (EVENTS 2016)

Research Overview

Language is the most reliable medium of human intellectual activities. Our objective is to establish the technology and academic discipline for handling and understanding language, in a manner that is as close as possible to that of humans, using computers. These include syntactic language analysis, semantic analysis, context analysis, text comprehension, text generation and dictionary systems to develop various application systems for machine translation and information retrieval.

Search Engine Infrastructure based on Deep Natural Language Processing

TSUBAKI.png

The essential purpose of information retrieval is not to retrieve just a relevant document but to acquire the information or knowledge in the document. We have been developing a next-generation infrastructure of information retrieval on the basis of the following techniques of deep natural language processing: precise processing based not on words but on predicate-argument structures, identifying the variety of linguistic expressions and providing a bird's-eye view of search results via clustering and interaction.

Machine Translation

EBMT.png

To bring automatic translation by computers to the level of human translation, we have been studying next-generation methodology of machine translation on the basis of text understanding and a large collection of translation examples. We have already accomplished practical translation on the domain of travel conversation, and constructed a translation-aid system that can be used by experts of patent translation.

Fundamental Studies on Text Understanding

To make computers understand language, it is essential to give computers world knowledge. This was a very hard problem ten years ago, but it has become possible to acquire knowledge from a massive amount of text in virtue of the drastic progress of computing power and network. We have successfully acquired linguistic patterns of predicate-argument structures from automatic parses of 7 billion Japanese sentences crawled from the Web using grid computing machines. By utilizing such knowledge, we study text understanding, i.e., recognizing the relationships between words and phrases in text.

Access