Research

Language is the most reliable medium of human intellectual activities. Our objective is to establish the technology and academic discipline for handling and understanding language, in a manner that is as close as possible to that of humans, using computers. These include syntactic language analysis, semantic analysis, context analysis, text comprehension, text generation and dictionary systems to develop various application systems for machine translation and information retrieval.

Fundamental Studies on Text Understanding

understanding.png

To make computers understand language, it is essential to give computers world knowledge. This was a very hard problem ten years ago, but it has become possible to acquire knowledge from a massive amount of text in virtue of the drastic progress of computing power and network. We have successfully acquired linguistic patterns of predicate-argument structures from automatic parses of 7 billion Japanese sentences crawled from the Web using grid computing machines. By utilizing such knowledge, we study text understanding, i.e., recognizing the relationships between words and phrases in text.

Machine Translation

EBMT.png

To bring automatic translation by computers to the level of human translation, we have been studying next-generation methodology of machine translation on the basis of text understanding and a large collection of translation examples. We have already accomplished practical translation on the domain of travel conversation, and constructed a translation-aid system that can be used by experts of patent translation. From 2006, we participate in the Japanese-Chinese translation project by the special coordination funds for the promotion of science and technology. Please see KyotoEBMT and Project on Practical Implementation of Japanese to Chinese-Chinese to Japanese Machine Translation for more details.

Search Engine Infrastructure based on Deep Natural Language Processing

TSUBAKI.png

The essential purpose of information retrieval is not to retrieve just a relevant document but to acquire the information or knowledge in the document. We have been developing a next-generation infrastructure of information retrieval on the basis of the following techniques of deep natural language processing: precise processing based not on words but on predicate-argument structures, identifying the variety of linguistic expressions and providing a bird's-eye view of search results via clustering and interaction.

PhD Alumni

※ The full thesis of abstract shown in this page could be found at 京都大学電気関係教室技術情報誌cue (Japanese).