ニュース

COLING2016 (2016/12/11-16)で以下の論文発表を行います。(Updated:11/7)

  • Kenji Yamauchi and Yugo Murawaki: Contrasting Vertical and Horizontal Transmission of Typological Features
  • Mo Shen, Wingmui Li, HyunJeong Choe, Chenhui Chu, Daisuke Kawahara and Sadao Kurohashi: Consistent Word Segmentation, Part-of-Speech Tagging and Dependency Labelling Annotation for Chinese Language
  • Fabien Cromieres: Kyoto-NMT: A Neural Machine Translation implementation in Chainer (System Demonstration)
  • Chenhui Chu, Toshiaki Nakazawa, Daisuke Kawahara and Sadao Kurohashi: SCTB: A Chinese Treebank in Scientific Domain (ALR12 2016)
  • Naoki Otani, Daisuke Kawahara, Sadao Kurohashi, Nobuhiro Kaji and Manabu Sassano: Large-Scale Acquisition of Commonsense Knowledge from a Quiz Game on a Dialogue System (OKBQA2016)

  (右に続く)

  • Fabien Cromieres, Chenhui Chu, Toshiaki Nakazawa and Sadao Kurohashi: Kyoto University Participation to WAT 2016 (WAT2016)
  • Toshiaki Nakazawa, Chenchen Ding, Hideya MINO, Isao Goto, Graham Neubig and Sadao Kurohashi: Overview of the 3rd Workshop on Asian Translation (WAT2016)

京大&JST日英中専門用語対訳辞書TriTechDictを公開しました。(10/24)

科学技術分野の中国語ツリーバンクSCTBを公開しました。(10/20)

坂田君が次の論文で情報処理学会関西支部 支部大会の支部大会奨励賞を受賞しました。(9/26)

  • 坂田亘, 柴田知秀, 黒橋禎夫: 語彙関係知識と単語間表現パターンを用いた単語分散表現の改良

日本語形態素解析システム JUMAN++ を公開しました。(9/23)

研究の概要

本研究室では,言語の仕組み,それを用いたコミュニケーションの仕組みを計算機が扱える正確さで解明するという理論的研究と,それによって情報検索,自動翻訳,マンマシンインタフェース等をより高度化して人間の活動を支援するという工学的研究を行っています.(→詳細)

知識に基づく構造的言語処理の確立と知識インフラの構築

TSUBAKI.png

テキストは,専門家によるデータの分析結果や解釈,ステークホルダーの批判・意見,種々の手続きやノウハウなどが表出されたものであり,人間の知識表現の根幹をなすものです.知識に基づく頑健で高精度な構造的言語処理を実現するとともに,これによって様々なテキストの横断的な関連付け,検索,比較を可能とする知識インフラの構築を目指しています.また,注釈付与コーパス,辞書,言語解析システムの公開によって研究コミュニティによる一層の研究の加速を実現するとともに,これらの研究成果を企業のカスタマーセンター業務等に適用する実験を始めています.このようなテーマで,2013年10月から5.5年間のCRESTプロジェクトを推進しています.

自動翻訳の高度化に関する研究

EBMT.png

計算機による自動翻訳をより人間的な翻訳に近づけるために,言葉の理解・パラフレーズを通した翻訳や,大量の用例を利用した次世代翻訳方式の研究を行っています.JSTと協力し、日中科学技術文献の自動翻訳実用化プロジェクトに取り組むとともに,クラウドソーシングなどを利用した対訳コーパスの構築、自動翻訳の利用による多言語ブログからの意見集約などの研究を展開しています.

言語理解の基礎的研究

計算機による言語理解を実現するためには,計算機に常識・世界知識を与える必要があります.10年前にはこれは非常に難しい問題でしたが,近年の計算機パワー,計算機ネットワークの飛躍的進展によって計算機が超大規模テキストを取り扱えるようになり,そこから常識を自動獲得することが少しずつ可能になってきました.我々の研究室でも,クラスタ計算機を使ってWebから収集した100億文超の大規模テキストを処理することにより,同義語・類義語知識、述語項構造パターン、事態間関係知識等の自動学習を行っています.さらに,このような知識を利用することにより,計算機による文章理解,すなわち文章中の語/句/文間の関係性の解析について研究を進めています.

アクセス

  • 住所/場所
    • 〒606-8501 京都市左京区吉田本町
    • 京都大学 吉田本部キャンパス 総合研究9号館(旧工学部3号館) 南棟 2階 S208
  • 連絡先
    • Tel/Fax:(075)753-5962
    • Email: contact あっと nlp.ist.i.kyoto-u.ac.jp

関連サイト


トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS